

B.Sc. (Honours) Applied Science Degree Program Faculty of Applied Sciences University of Sri Jayewardenepura

Course Title	Data Visualisation
Course Code	ASP 460 2.0
Credit Value	02
Status	Optional
Year/ Level	Year 4
Semester	1
Theory: Practical: Independent Learning	30:00:70
Other: Pre-requisite course/s	STA 124 1.5 Data Analysis I, STA 226 1.5 Data Analysis
	II, STA 326 2.0 Programming and Data Analysis with R

Aims of the Course:

- To introduce data visualization principles, theories and techniques.
- To introduce how to better understand your data, present findings and tell engaging data stories that clearly depict the points you want to make all through data graphics.

Intended Learning Outcomes:

On the successful completion of this course, the student should be able to:

- 1. Define principles of good visualisation design.
- 2. Identify appropriate data visualisation techniques.
- 3. Create data graphics using the ggplot2 package.
- 4. Design and create data visualisations for your target audience and task.
- 5. Develop dynamic visualisations that allow others to interact with data.
- 6. Critique existing visualisations based on data visualisation theory and principles and revise data visualisations using appropriate design principles.

Course Content:

- 1. Introduction to data visualisation
 - 1.1. History of data visualisation
 - 1.2. Design principles
 - 1.3. Visualisation design process
- 2. Scientific design choices in data visualisation
 - 2.1. Encoding and decoding
 - 2.2. Encoding objects
 - 2.3. Value-encoding attributes
- 3. The grammar of graphics

- 3.1. Data, Aesthetics, Geometrics, Facets, Statistics, Coordinates, Theme, Scale
- 4. Higher-dimensional displays and special structures
 - 4.1. Scatterplot matrices
 - 4.2. Parallel coordinates
 - 4.3. Mosaic plots
 - 4.4. Small multiples and trellis displays
- 5. Visualisation of high-dimensional data
 - 5.1. Techniques for reducing the dimensionality
 - 5.2. Principal component analysis
- 6. Visualisation of multivariate data, time series data and spatial data
 - 6.1. Time series graphics
 - 6.2. Choropleth map, Heat map, Hexagonal binning, Dot map, Cluster map Bubble map, Cartogram map
 - 6.3. Visualising maps, Faceting, Small multiples
- 7. Linked data views for visual exploration

Scope and Schedule of Teaching - Learning Activities:

Topic Topic Topic		No. of Hrs			Teaching	Assessment	ILO
No.	o.		Р	IL	Method	Criteria	Alignment
1	Introduction to data visuali- sation: History of data visu- alisation, Design principles,	2	0	4	Lecture FA1: History of data visualisation	10% of Final Marks	1
2	Visualisation design process Scientific design choices in data visualisation: Encod- ing and decoding, Encoding objects, Value-encoding at- tributes	2	0	4	Lecture/ Practice ques- tions		1, 2
3	The grammar of graphics: In- troduction to the grammar of graphics	2	0	4	Lecture/ Virtual Dis- cussion Forum/ Flipped classroom		1,2
4	The grammar of graphics: Data wrangling	2	0	4	Lecture/ Virtual Discus- sion Forum/ Practice questions		2,3
5	Introduction to the ggplot2 package	2	0	4	Lecture/ Virtual Discus- sion Forum		3
6	Coordinate systems and axes	2	0	5	Lecture/ Virtual Discus- sion Forum/ Practice questions		3
7	Creating different types of static graphic	2	0	5	Lecture/ Virtual Discus- sion Forum/ Practice questions		3

 $\operatorname{cont.}$

Scope and Schedule of Teaching - Learning Activities (cont.):

Topic	m · / G h m ·	No. of Hrs			Teaching	Assessment	ILO
No.	Topic/Sub Topic	Т	P	IL	Method	Criteria	Alignment
8	Higher-dimensional displays and special structures: Scat- terplot matrices, Parallel coordinates, Mosaic plots, Small multiples and trellis displays	2	0	5	Lecture/ Virtual Discus- sion Forum FA2: Quiz	10% of Final Marks	4
9	Visualisation of high- dimensional data: Tech- niques for reducing the dimensionality, Principal component analysis	2	0	5	Lecture/ Virtual Discus- sion Forum		4
10	Visualisation of multivariate data, time series data and spatial data: Visualisation of multivariate data	2	0	5	Lecture/ Practice ques- tions/ Virtual Discussion Forum		4
11	Visualisation of multivariate data, time series data and spatial data: Visualisation of time series data	2	0	5	Lecture/ Virtual Discus- sion Forum/ Kaggle com- petition		4
12	Visualisation of multivariate data, time series data and spatial data: Visualisation of spatial data	2	0	5	Lecture/ Virtual Discus- sion Forum/ Practice questions FA3: Exploratory Data Analysis	20% of Final Marks	4
13	Linked data views for visual exploration: Linked data views for visual exploration	2	0	5	Lecture/Practice ques- tions/ Virtual Discussion Forum		5, 6
14	Linked data views for visual exploration: Dashboards, in- teractive and animated dis- plays	2	0	5	Lecture/ Virtual discus- sion forum		5, 6
15	A recapitulation	2	0	5	Lecture/ Practice ques- tions/ Virtual Discussion Forum		6
	Total	30	00	70			

Linking Program Outcomes with ILOs:

Program Outcomes: B.Sc. Honours degree

- 1. Demonstrate competency in theoretical knowledge and practical and/or technical skills in the respective field of specialization (statistics).
- 2. Communicate efficiently and effectively in the respective field of specialization using written, oral, visual and/or electronic forms.
- 3. Facilitate and participate as an empathetic and emotionally intelligent team player with leadership qualities, in a group, diverse team or organization.
- 4. Apply subject-specific knowledge and skills creatively to solve real-world problems by making context-specific operational decisions while adapting to changing environments.
- 5. Integrate creativity, innovation, and entrepreneurial and managerial proficiencies to build values.

- 6. Implement subject-based solutions in keeping with ethical, societal and environmental norms and need for sustainable development.
- 7. Secure life goals through lifelong learning with the aim of scholarly advancement and/or strengthening professional skills, and ensuring the betterment of the community.

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7
ILO 1	***	*		*	*		*
ILO 2	***	**		**	*		*
ILO 3	**	**			**		*
ILO 4	***	***		***	**		***
ILO 5	***	***		***	***		***
ILO 6	***	***	***	***	***	***	***

*** _	Strongly	linked;	** - Medi	um linked:	* -	Weekly	linked
-------	----------	---------	-----------	------------	-----	--------	--------

Mode of Assessment:

Formative Assessment (FA):

FA110% + FA210% + FA320% = 40% of total marks

Summative Assessment (SA):

Individual project = 60% of total marks

References:

- Talagala, T. S. (2020). Course website: ASP 460 2.0 Data Visualisation, *Course website*. https://tstdataviz.netlify.app/schedule/
- Chen, C. H., Hardle, W. K., & Unwin, A. (2007). *Handbook of data visualization*. Springer Science & Business Media.
- Wickham, H., & Grolemund, G. (2019). *R for data science: import, tidy, transform, visualize, and model data.* O'Reilly Media, Inc.
- Grolemund, G., & Wickham, H. (2014). A cognitive interpretation of data analysis. *International Statistical Review*, 82(2), 184-204.

Prepared by: Dr Thiyanga S. Talagala email: ttalagala@sjp.ac.lk